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INTRODUCTION RESULTS & DISCUSSION

Severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) is the pathogen that caused the COVID-19 Optimisation of Rapid IP
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Trlton X-100 is preferred over RIPA due to greater mltochondrlal (D). Expression of TOM20 is enriched upon ORF9b expression :

, Which is encoded by the second open reading enrlchment (see @), less ER enrichment (see (@), and effectlve ;(see 2). May be triggered to counterbalance the reduction in
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innate immunity. Studies have also shown that SARS-CoV-2 - importefficiency.
ORF9b perturbs mitochondrial function through binding to
and inhibiting TOM70%. However, the complete molecular __ Rapid IP \Q _ cg::fr‘iafr:;;it?:m i ORF9b-myc OMP25-6GFP-3xHA COXIV Merged (OMP25+COXIV)
mechanism underlying SARS-CoV-2 ORF9b mediated e | e | Wholecel |00 i
mitochondrial dysfunction is yet to be deciphered. oy w _ﬁ?_ﬁ‘gb_ é
Through unveiling the overall mitochondrial proteome rovzo S | e o e o é
changes during SARS-CoV-2 ORF9b expression, not only can Calnonln  —— e
we gain a better understanding of the intricate molecular Lamin%m!!.[ QY T 5
virus-host interaction at mitochondria during SARS-CoV-2 o S SR G %
infection, potential therapeutic drug targets for COVID-19 or Fig. 5. Western b.lot images for comparin.g the pgrity ofmitochpndrial %

. . . _ . fraction obtained from rapid IP and differential centrifugation. <!
related infectious diseases can also be identified. e O

'Rapid IP is a more superior method due to greater :

: mitochondrial enrichment (see ®&®) and effective . Fig. 6. Confocal microscopy (Airyscan) images of HEK 293T cells expressing OMP25-eGFP-3xHA transfected by ORF9b or
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- (1) Mitochondria remain intact during expression of OMP25-eGFP-3xHA
LC' M S/ M S (2) ORF9b did not distort OMP25 localization on OMM 5
.= Rapid IP can be applied on HEK 293T cells expressing both OMP25-eGFP- 3xHA

Cell Seeding
Seed 10mL of HEK 293T cells on each 10-cm plate at 4x10*5/mL Trial 1 (227) Trial 2 (95) and ORF9b.
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Transfect cells with DNA3.1+ ORF9b using GeneJuice for 24hr .
Rapid IP Uoreg MitoProbe JC-1 Assay
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suitable for LC-MS/MS analysis due to low salt concentration in isolation buffer'%!"12. VCP IDH2 ERP44 MRPL9
. VMTERF3 — UL - : ORF9b increased mitochondrial membrane potential by 4.9%

LC-MS/MS (Bruker timsTOF Pro) .= ORF9b increased mtROS production™. §
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Fig. 9. Western blot image of a LC-MS/MS target in rapid

. Table 1. List of differentially expressed mitochondrial proteins detected in _ ) . 'the treatment of COVID-19 and
MitoProbe JC-1 Assay both LC-MS/MS trals. Proteins that regulate the TCA cycle and ETC are P >0\ated mitochondria of ORFSb-transfected HEK 233T cells.

Cell Seeding shown in red colour. . Known that ROS simulates mitochondrial : related diseases using therapeutic :
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Refer to suggested protocol™ ' during ORF9b expression. j
Amendment: Proposed mechanism: ORF9b dysregulates . Here may | express my gratitude towards my supervisor Prof JIN, Dong-Yan and my
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: mitochondrial reactive oxygen species (mtROS) patience throughout the project.
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